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Abstract. In this paper, we present TxCF-Tree, a balanced tree whose
design is optimized to support transactional accesses. The core optimiza-
tions of TxCF-Tree’s operations are: providing a traversal phase that
does not use any lock and/or speculation, and deferring the lock acqui-
sition or physical modification to the transaction’s commit phase; isolat-
ing the structural operations (such as re-balancing) in an interference-less
housekeeping thread; and minimizing the interference between structural
operations and the critical path of semantic operations (i.e., additions
and removals on the tree). We evaluated TxCF-Tree against the state-
of-the-art general methodologies for designing transactional trees and we
show that TxCF-Tree’s design pays off in most of workloads.
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1 Introduction

With the growing adoption of multi-core processors, the design of efficient data
structures that allow concurrent accesses without sacrificing performance and
scalability becomes more critical than before. In the last decade, different designs
of the concurrent version of well-known data structures (e.g., lists, queues, hash
tables) have been proposed [19]. Balanced binary search trees, such as AVL and
Red-Black trees are data structures whose self-balancing guarantees an appealing
logarithmic-time complexity for their operations.

One of the main issues in balanced trees is the need for rotations, which are
complex housekeeping operations that re-balance the data structure to ensure
its logarithmic-time complexity. Although rotations complicate the design of
concurrent balanced trees, many solutions have already been proposed: some of
them are lock-based [5, 8, 9, 2, 3, 12], while others are non-blocking [7, 13, 20, 22].

One of the main limitations of concurrent data structures is that they do not
compose. For example, atomically inserting two elements in a tree is difficult: if
the method internally uses locks, issues like managing the dependency between
operations executed in the same transaction, and the deadlock that may occur
because of the chain of lock acquisitions, may arise. Similarly, composing non-
blocking operations is challenging because of the need to atomically modify
different places in the tree using only basic primitives, such as a CAS operation.
Lack of composability is a serious limitation of the current designs, especially for
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legacy systems, as it makes their integration with third-party software difficult.
In this paper we focus on composable (transactional) balanced trees.

Although the research has reached an advanced point in designing concurrent
trees, transactional trees have not reached this point yet. There are two practical
approaches, to the best of our knowledge, that enable transactional accesses on
a tree: 1) The first approach is Transactional Memory (TM) [18] which natively
allows composability as it speculates every memory access inside an atomic block;
2) The second approach is Transactional Boosting [17] (TB), which protects the
transactional access to a concurrent data structure with a set of semantic locks,
eagerly acquired before executing the operation on the concurrent data structure.
Both TM and TB have serious limitations when used for designing transactional
trees. Those limitations originate from the same reason: they are both generic,
and they do not consider the specific characteristics of balanced trees, which
instead are heavily investigated in literature. For example, TM considers every
step in the operation, including the rotations, as low-level memory reads/writes,
which clearly increases the number of false conflicts. On the other hand, TB
uses the underlying concurrent tree as a black-box, which prevents any further
customization, and may nullify the internal optimizations of the concurrent tree
due to the eagerly acquired semantic locks.

Recently, a third trend, which we name Optimistic Semantic Synchroniza-
tion (OSS), has emerged to overcome the limitations of the above approaches.
Examples of this new approach include methodologies like [1, 4, 24, 16, 15, 6].
We used the word optimistic because all of these solutions share a fundamental
optimism. In fact, the common idea behind the aforementioned methodologies is
to split data structures’ operations into a traversal phase and a commit phase.
A transaction optimistically executes the traversal phase without any locking
and/or speculation, and it defers the commit phase to the commit time of the
enclosing transaction. Unlike TM and TB, OSS only provides guidelines to de-
sign transactional data structures, and it leaves all the development details to
the data structure designer, thus enabling the possibility of adding further (data
structure-specific) optimizations.

OSS is clearly less programmable than TM and TB, but it has the potential to
provide better performance and scalability, especially when applied to complex
data structures, like the case of balanced trees. Due to their high abstraction
level, none of the methodologies listed above discusses in detail how they can be
applied to balanced trees without nullifying the body of work related to highly
optimized concurrent (non-transactional) balanced trees.

Inspired by OSS, in this paper we present TxCF-Tree, the first balanced
tree that is accessible in a transactional, rather than just a concurrent, manner
without monitoring (speculating) the whole traversal path (like in TM) or nul-
lifying the benefits of the efficient concurrent designs (like in TB). TxCF-Tree
offers a set of design and low-level innovations, but roughly it can be seen as
the transactional version of the recently introduced Contention Friendly Tree
(CF-Tree) [9]. The main idea of CF-Tree is to decouple the structural operations
(e.g. rotations and physical deletions) from the semantic operations (e.g. queries,
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logical removals, and insertions), and to execute those structural operations in
a dedicated helper thread. This separation makes the semantic operations (that
need to be transactional in TxCF-Tree) simple: each operation traverses the tree
non-speculatively (i.e., without instrumenting any accessed memory location);
then, if it is a write operation, it locks and modifies only one node. In an ab-
stract way, the TxCF-Tree’s semantic operations can be seen as composed of a
traversal and commit phases, which makes CF-Tree a good candidate for being
transactionally boosted using OSS.

In addition to the new transactional capabilities, TxCF-Tree claims one ma-
jor innovation with respect to CF-Tree, which is fundamental for targeting high
performance in a transactional (not only concurrent) data structure. Although
CF-Tree decouples the structural operations, those operations are executed in
the helper thread with the same priority as the semantic operations, and without
any control on their interference. With TxCF-Tree, we make the structural op-
erations interference-less (when possible) with respect to semantic operations.
This property is highly desirable because structural operations do not alter the
abstract (or semantic) state of the tree, thus they should not force any transac-
tion to abort. To reduce this interference, one operation should behave differently
if it conflicts with a structural operation rather than with a semantic operation.

TxCF-Tree uses two new terms, which help to identify those false-interleaving
cases and alleviate their effect: structural lock, which is a type of lock acquired
if the needed modifications on the node do not change its abstract (semantic)
state; and structural invalidation, which is a transactional invalidation raised
only because of a structural modification on the tree rather than having actual
conflicts at the abstract level. In TxCF-Tree, transactions do not abort if they
face structural locks or false-invalidations during the execution of their oper-
ations. We further reduce the interference of the helper thread by adopting a
simple heuristic to detect if the tree is almost balanced. If so, we increase the
back-off time between two helper thread’s iterations.

We assessed the effectiveness of TxCF-Tree1 through an evaluation study.
Our experiments show that TxCF-Tree performs better than the other transac-
tional approaches (TB and STM) in almost all of the cases.

2 Background

Optimistic Semantic Synchronization. We use the term Optimistic Seman-
tic Synchronization (OSS) to represent a set of recent methodologies that lever-
age the idea of dividing the transaction execution into phases and optimistically
executing some of them without any instrumentation (also called unmonitored
phases). In this section, we overview some of those approaches.

Optimistic Transactional Boosting (OTB) methodology [15, 16] is the opti-
mistic version of TB. It lists three guidelines to convert any optimistic concur-
rent data structure into a transactional one. According to OTB’s first guideline,

1 The implementation of TxCF-Tree is available at www.hyflow.org.
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every data structure’s operation is split into three phases: traversal, which is
executed without any instrumentation and/or locking until reaching the posi-
tion of interest in the data structure; validation, which checks the validity of
the unmonitored traversal’s outcome; and commit, which acquires the necessary
locks and performs the actual modifications. OTB provides transactional ca-
pabilities by i) saving the outcome of the traversal phase into local semantic
read/write-sets to be used during the validation and commit phases; and ii)
deferring operation’s commit phase until the commit of the whole transaction.
The unmonitored traversal phase is the actual source of OTB’s performance
gains as it clearly reduces false conflicts. The second guideline of OTB discusses
the necessary and sufficient steps to make this transactional version semantically
opaque [14], which means that if the data structure is only accessed using its
defined APIs, then all of its operations are semantically consistent at any time of
the transaction execution, even though opacity may not be ensured at the mem-
ory level (e.g., due to the unmonitored traversal phase). The third guideline of
OTB is to optimize the data structure internally.

Consistency Oblivious Programming (COP) [1, 4] splits the operations into
the same three phases as OTB (but under different names). We observe two
main differences between COP and OTB. First, COP is introduced mainly to
design concurrent data structures and it does not natively provide composability
unless changes are made at the hardware level [4]. Second, COP does not use
locks at commit. Instead, it enforces atomicity and isolation by executing both
the validation and commit phases using TM transactions.

Partitioned Transactions (ParT) [24] also uses the same trend of splitting the
operations into a traversal (called planning) phase and a commit (called update)
phase, but it gives more general guidelines than OTB. Specifically, ParT does
not restrict the planning phase to be a traversal of a data structure and it allows
this phase to be any generic block of code. Also, ParT does not obligate the
planning phase to be necessarily unmonitored, as in OTB and COP. Instead, it
allows both the planning and update phases to be transactions.

Transactional Predication (TP) [6] applies a similar methodology to the
aforementioned approaches. However, it solves the specific problem of boosting
concurrent sets and maps to be transactional.

Although TxCF-Tree complies with OSS, it is closer to OTB because it uses a
well-defined concurrent tree as a base for its design (which fits the terminology of
transactional boosting), and it follows the second guideline of OTB to guarantee
that the transaction execution is semantically opaque.

Contention Friendly Tree. Contention Friendly Tree (CF-Tree) [9] is an
efficient concurrent lock-based (internal) tree, which finds its main innovation on
decoupling the semantic operations (i.e., search, logical deletion, and insertion)
from the structural operations (i.e., rotation and physical deletion). The semantic
operations are eagerly executed in the original process, whereas the structural
operations are deferred to a helper thread. More in details:

Semantic Operations: each semantic operation starts by traversing the tree
until it reaches a node that matches the requested key or it reaches a leaf node
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(indicating that the searched node does not exist). After that, a search opera-
tion returns immediately with the appropriate result without any locking. For a
deletion, if the node exists and it is not marked as deleted, the node is locked
and then the deleted flag is set (only a logical deletion), otherwise the operation
returns false. For a successful insertion, the deleted flag is cleared (if the node
already exists but marked as deleted) or a new node is created and linked to the
leaf node (if the node does not exist). An unsuccessful insertion simply returns
false. In all cases, each operation locks at most one node.

Rotations: re-balancing operations are isolated in a helper thread that scans
the tree seeking for any node that needs either a rotation or a physical removal.
Rotation in this case is relaxed, namely it uses local heights. Although other
threads may concurrently modify these heights (resulting in a temporarily un-
balanced tree), past work has shown that a sequence of localized operations on
the tree eventually results in a strictly balanced tree [5, 21]. A rotation locks: the
node to be rotated down; its parent node; and its left or right child (depending
on the type of rotation). Also, rotations are designed so that any concurrent
semantic operation can traverse the tree without any locking and/or instrumen-
tation. To achieve that, the rotated-down node is cloned and the cloned node is
linked to the tree instead of the original node.

Physical Deletion: The physical deletion is also decoupled and executed sep-
arately in the helper thread. In addition, a node’s deletion is relaxed by leaving
a “routing” node in the tree when the deleted node has two children (it is known
that deleting a node with two children requires modifying nodes that are far
away from each other, which complicates the operation). The physical deletion
is done as follows: both the deleted node and its parent are locked, then the
node’s left and right children links are modified to be pointing at its parent, and
finally the node is marked as physically removed. This way, concurrent semantic
operations can traverse the tree non-speculatively without being lost.

Among the concurrent trees presented in literature, we select CF-Tree as a
candidate to be transactionally boosted because it provides the following two
properties that fit the OSS principles. First, it uses a lock-based technique
for synchronizing the operations, which simplifies the applicability of the OSS
methodology. Second, CF-Tree is traversed without any locking and/or spec-
ulation, allowing the separation of an unmonitored traversal phase. Also, the
semantic operations (add, remove, and contains) are decoupled from the com-
plex structural operations (although they can interfere with each other), like
rotations and physical removals, allowing a simple commit phase.

3 Reducing the interference of structural operations

Balanced trees store data according to a specific balanced topology so that their
operations can take advantage of the efficient logarithmic-time complexity. More
specifically, operations are split into two parts: a “semantic” part, which modifies
the abstract state of the tree, and a structural part, which maintains the efficient
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organization of the tree. For example, consider the balanced tree in Figure 12.
The tree initially represents the abstract set {1, 2} (Figure 1(a)). If we want
to insert 3, we first create a new node and link it to the tree in the proper
place (Figure 1(b)). Subsequently, the tree is re-balanced because this insertion
unbalanced a part of it (Figure 1(c)). Semantically, we can observe the new
abstract set, {1, 2, 3}, right after the first step and before the re-balancing step.
However, without the re-balancing step, the tree structure itself may become
eventually skewed, and any traversal operation on the tree would take linear
time rather than logarithmic time.

(a) Initial state (b) Insert 3 (c) Rotate

Fig. 1. An insertion followed by a right rotation in a balanced tree.

Although the structural operations are important, like the aforementioned
rotations in our case, they represent the main source of conflicts when concur-
rent accesses on the tree occur. Two independent operations (like inserting two
nodes in two different parts of the tree) may conflict only because one of them
needs to re-balance the tree. This additional conflict generated by structural
operations can significantly slow down the performance of transactional data
structures more than their concurrent versions due to two reasons. First, in long
transactions, the time period between the tree traversal and the actual modifica-
tion during commit may be long enough to generate more conflicts because of the
concurrent re-balancing. Second, in transactional data structures, any conflict
can result in the abort and re-execution of the whole transaction, which possi-
bly includes several non-conflicting operations, unlike concurrent operations that
just re-traverse the tree if a conflict occurs.

Although CF-Tree decouples the structural operations in a dedicated helper
thread, which forms an important step towards shortening the critical path of
the processing (i.e., the semantic operations), it does not prevent the structural
operations running in the helper thread from interfering with the semantic oper-
ations and delaying/aborting them. To minimize such a interference, we propose
the following simple guideline (named G-Pr):
“Semantic operations should have higher priority than structural operations.”

This guideline allows semantic operations to proceed if a conflict with struc-
tural modifications occurs. Our rationale is that, delaying (or aborting) semantic
operations affects the performance, whereas delaying (or aborting) structural op-
erations only defers the step of optimizing the tree to the near future.

2 We assume that higher keys are in the left sub-tree to match CF-Tree’s design.
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4 TxCF-Tree

In this section, we discuss how to boost CF-Tree to be transactional using the
OSS principles. The key additions of TxCF-Tree over CF-Tree are: i) supporting
transactional accesses; and ii) minimizing the interference between semantic and
structural operations. to simplify the presentation, we focus on the changes made
on CF-Tree to achieve those two goals, and we briefly mention the unchanged
parts whose details can be found in [9].

Each node in TxCF-Tree contains the same fields as CF-Tree: a key (with no
duplication allowed), two pointers to its left and right children, a boolean deleted
flag to indicate the logical state of the node, and an integer removed flag to
indicate the physical state of the node (a value from the following: NOT-REMOVED,
REMOVED, or REMOVED-BY-LEFT-ROTATION). The node structure in TxCF-Tree is
only different in the locking fields. In CF-Tree, each node contains only one lock
that is acquired by any operation modifying the node. In TxCF-Tree, each node
has two different locks: a semantic-lock, which is acquired by the operations
that modify its semantic state (either the deleted or the removed flag); and a
structural-lock, which is a acquired by the operations that modify the structure
of the tree without affecting the node itself (i.e. modifying the right or left
pointers). Each lock is associated with a lock-holder field that saves the ID of
the thread that currently holds the lock, which is important to avoid deadlocks.

TxCF-Tree implements a set interface with the semantic operations: add,
remove, and contains. Extending TxCF-Tree to have key-value pairs is simple,
but for clarity we assume that the value of the node is the same as its key.

4.1 Structural Operations

The helper thread repeatedly calls a recursive depth-first procedure to traverse
the entire tree. During this procedure, any unbalanced node is rotated and any
logically removed node is physically unlinked from the tree. To minimize the
interference of this housekeeping procedure, we use an adaptive back-off delay
after each traversal iteration. We use a simple hill-climbing mechanism that
increases (decreases) the back-off time if the number of housekeeping operations
in the current iteration is less (greater) than the most recent iteration. While
acknowledging the simplicity of the adopted heuristic, it showed effectiveness in
our evaluation study.

Physical Deletions. We start by summarizing how the helper thread in
CF-Tree physically deletes a node Nn ( marked as deleted and at least one of
its children is null). First, both Nn and its parent Np are locked. Then, the
node’s left and right children fields are modified to point back to the parent (so
that the concurrent operations currently visiting Nn can still traverse the tree,
without experiencing any interruption) and then Nn is marked as REMOVED and
unlinked by changing Np child to be Nn’s child instead of Nn.

TxCF-Tree modifies this mechanism by providing less-interfering locking.
Specifically, we only acquire the structural-lock of Np because its semantic state
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will not change. On the other hand, both the semantic-lock and the structural-
lock have to be acquired on Nn because Nn’s removed flag, which is part of
its semantic state, should be set as REMOVED. To further minimize the interfer-
ence, the locking mechanism uses only one CAS trial. If it fails, then the whole
structural operation is aborted and the helper thread resumes scanning the tree.

Rotations. In CF-Tree, a right rotation (without losing generality) locks
three nodes: the parent node Np, the node to be rotated down Nn, and its left
child Nl. Then, rotation is done by cloning Nn and linking the cloned node at the
tree instead of Nn (similar to physical deletion, this cloning protects operations
whose “unmonitored” traversal phase is concurrently visiting the same nodes.
More details are in [9]). Subsequently Nn is marked as REMOVED (in case of left-
rotation it is marked as REMOVED-BY-LEFT-ROTATION) and nodes are unlocked.

In TxCF-Tree, rotations also use a less intrusive locking mechanism. Both
Np and Nl acquire only the structural-lock because the rotated-down node Nn is
the only node that will change its semantic state (and thus needs to acquire the
semantic-lock). Also, we found that there is no need to lock the parent node (i.e.,
Np) at all. This is because the only change to Np is to make its left (or right) child
pointing to Nl rather than Nn. This means that Np’s child remains not null

before and after the rotation. Only the helper thread can change it to null in a
later operation by rotating the node down or physically deleting its children. On
the other hand, semantic operations only concern about reading/changing the
deleted flag of a node, if the searched node exists in the tree, or reading/changing
a (null) link of a node, if the searched node does not exist in the tree. Thus,
modifying the child link of Np cannot conflict with any concurrent semantic
operation, thus it is safe to make this modification without locking. Similarly,
if all the sub-trees of Nn and Nl are not null, then no structural locks are
acquired, and the only lock acquired is the semantic-lock on Nn.

4.2 Semantic Operations

According to OSS, each operation is divided into the traversal, validation, and
commit phases. We follow this division in our presentation.

Traversal. The tree is traversed by following the classical rules of the se-
quential binary search tree. Traversal ends if we reach the searched node or a
null pointer. To be able to execute the operation transactionally, the outcome
of the traversal phase is not immediately returned. Instead it is saved in a local
semantic read/write sets. Each entry of those sets consists of the following three
fields. Op-key : the searched key that needs to be inserted, removed, or looked
up. Node: the last node of the traversal phase. This node is either a node whose
key matches op-key (no matter if it is marked as deleted or not) or a node whose
right (left) child is null and its item is greater (less) than op-key. Op-type: an
integer that indicates the type of the operation (add, remove, or contains) and
its result (successful or unsuccessful).

Those fields are sufficient to verify (by the transaction validation) that the
result of the operation is not changed since the execution of the operation, and to
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modify the tree at commit time. All the operations add an entry to the read-set,
but only successful add and remove operations add entries to the write-set.

Before traversal, the local write-set is scanned for detecting read-after-write
hazards. If the key exists in the write-set, the operation returns immediately
without traversing the shared tree. Moreover, if a successful add operation is
followed by a successful remove operation of the same item (or vice versa), they
locally eliminate each other, in order to save the useless access to the shared
tree. The elimination is done only on the write-set, and the entries are kept in
the read-set so that the eliminated operations are guaranteed to be consistent.

Validation. The second phase of TxCF-Tree’s operation is the validation
phase. To have a comprehensive presentation, we show first the validation pro-
cedure in CF-Tree, and then we show how it is modified in TxCF-Tree.

Algorithm 1 Operation’s validation in CF-Tree.

1: procedure Validate(node, k)
2: if node.removed 6= NOT-REMOVED then
3: return false
4: else if node.k = k then
5: return true
6: else if node.k > k then
7: next = node.right

8: else
9: next = node.left

10: if next = null then
11: return true
12: return false

13: end procedure

In Algorithm 1, the validation in CF-Tree succeeds if the node’s key is not
physically removed and either the node’s key matches the searched key (line 5)
or its child (right or left according to the key) is still null (line 11). Otherwise,
the validation fails (lines 3 and 12). This validation is used during add/remove

operations as follows (details are in [9]): each operation traverses the tree until
it reaches the involved node, then it locks and validates it (using Algorithm 1).
If the validation succeeds, the operation stops its traversal loop and starts the
actual insertion/deletion. If the validation fails, the node is unlocked and the
operation continues the traversal. In [9], it has been proven that continuing the
traversal is safe even if the node is physically deleted or rotated by the helper
thread, due to the mechanism used in the deletion/rotation, as discussed in
Section 4.1 (e.g., modifying the left and right links of the deleted node to be
pointing to its parent before unlinking it).

Algorithm 2 Example of semantic opacity.

1: @Atomic . initially the tree is empty
2: procedure T1
3: if tree.contains(x) = false then
4: if tree.contains(y) = true then
5: ... . hazardous action
6: end procedure

7: @Atomic
8: procedure T2
9: tree.add(x)

10: tree.add(y)
11: end procedure

In TxCF-Tree, this validation procedure is modified to achieve two goals.
The first goal regards the correctness: since TxCF-Tree is a transactional
tree, validation has also to ensure that the operation’s result is not changed until
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transaction commits; otherwise, the transaction consistency is compromised. As
an example, in Algorithm 2 let us assume the following invariant: y exists in the
tree if and only if x also exists. If we use the same validation as Algorithm 1, T1
may execute line 3 first and return false. Then, let us assume that T2 is entirely
executed and committed. In this case, T1 should abort right after executing line
4 because it breaks the invariant. Aborting the doomed transaction T1 should
be immediate and it cannot be delayed until the commit phase because it may
go into an infinite loop or raise an exception (line 5). To prevent those cases,
all of the read-set’s entries have to be validated (using Algorithm 3 instead of
Algorithm 1) after each operation as well as during commit.

Algorithm 3 Operation’s validation in TxCF-Tree.

1: procedure Validate(read-set-entry)
2: if entry.op-type ∈ (unsuccessful add,
3: successful remove/contains) then
4: item-existed = true
5: else
6: item-existed = false
7: if entry.node.removed 6=
8: NOT-REMOVED then
9: return STRUCTURALLY-INVALID

10: else if entry.node.k = entry.op-key then
11: if entry.node.deleted xor
12: item-existed then
13: return VALID

14: else
15: return SEMANTICALLY-INVALID
16: else if entry.node.k > entry.op-key then
17: next = node.right
18: else
19: next = node.left
20: if next = null then
21: if item-existed then
22: return SEMANTICALLY-INVALID
23: else
24: return VALID
25: return STRUCTURALLY-INVALID

26: end procedure

The second goal regards performance: if the node is physically removed
or its child becomes no longer null (which are the invalidation cases of CF-
Tree), that does not mean that the transaction is not consistent anymore. It
only means that the traversal phase has to continue and reach a new node to be
validated. It is worth noting that aborting the transaction in those cases does
not impact the tree’s correctness, while its performance will be affected. In fact,
this conservative approach increases the probability of structural operations’
interference. For this reason we distinguish between those types of invalidations
and the actual semantic invalidations, such as those depicted in Algorithm 2. The
modified version of the validation is shown in Algorithm 3. The cases covered in
CF-Tree are considered structural-invalidations (lines 9 and 25), and the actual
invalidation cases are considered semantic-invalidations (lines 15 and 22).

Algorithm 4 shows how to validate the read-set. For each entry, we firstly
check if the entry’s node is not locked (lines 4-9). In this step we exploit our
lock separation by checking only one of the two locks because each operation
validates either the deleted flag or the child link. Specifically, if the node’s key
matches op-key, node’s semantic-lock is checked, otherwise the structural-lock is
checked. Moreover, if the entry’s node is locked by the helper thread, we consider
it as unlocked because the helper thread cannot change the abstract state of the
tree. The only effect of the helper thread is to make the operation structurally
invalid, which can be detected in the next steps.
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Algorithm 4 Read-set validation in TxCF-Tree.

1: procedure Validate-ReadSet(read-set)
2: for all entries in the read-set do
3: while true do
4: if entry.op-item = entry.node.item then
5: lock = semantic-lock
6: else
7: lock = struct-lock
8: if lockedNotByMeOrHelper(lock) then
9: return false

10: r = VALIDATE(entry)
11: if r = STRUCTURALLY-INVALID then
12: newNode = CONT-TRAVERSE(entry)

13: entry.node = newNode
14: write-entry = write-set.get(entry.op-key)
15: if write-entry 6= null then
16: write-entry.node = newNode

17: else if r = SEMANTICALLY-INVALID
then

18: return false
19: else
20: break;

21: return true

22: end procedure

The next step is to validate the entry itself (line 10). If it is semantically-
invalidated, then the transaction aborts (line 18). If it is structurally-invalidated,
the traversal continues as in CF-Tree and the entry is updated with the new
node (lines 12-16), then the node is re-validated. If the operation is a successful
add/remove, the related write-set entry is also updated (line 16).

Commit. The commit phase (Algorithm 5) is similar to the classical two-
phase locking mechanism. The nodes in the read/write sets are locked and/or
validated first, then the tree is modified, and finally locks are released.

Algorithm 5 Commit in TxCF-Tree.

1: procedure Commit
2: for all entries in the write-set do
3: while true do
4: . Try to acquire the lock
5: if entry.op-item = entry.node.k then
6: lock = semantic-lock
7: else
8: lock = struct-lock
9: if lockholder 6= myID

10: and !lock.acquire then
11: if lockholder 6= helperID then
12: ABORT
13: else
14: continue
15: . Inline Validation
16: . Similar to Algorithm 4
17: . But unlock before retrying
18: result = VALIDATE(entry)
19: ...
20: . Validate the remaining read-set entries
21: . Exactly like Algorithm 4

22: . But skips the entries that are also in the
write-set

23: VALIDATE-READ-OPERATIONS(read-
set)

24: . Publish write-sets
25: for all entries in the write-set do
26: if entry.op-type = remove then
27: entry.node.deleted = true
28: else . add operation
29: if entry.op-item = entry.node.item then
30: entry.node.deleted = false
31: else
32: newNode = CREATE-NODE(entry.key)
33: node = CONT-TRAVERSE(entry)
34: if node.key > entry.k then
35: node.right = newNode;
36: else
37: node.left = newNode;

38: . Unlock
39: UNLOCK(write-set)

40: return true

41: end procedure

From the commit procedure of TxCF-Tree it is worth mention the following
points. The first point is how TxCF-Tree solves the issue of having two dependent
operations in the same transaction. For example, if two add operations are using
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the same node (e.g. assume a transaction that adds both 3 and 4 to the tree
shown in Figure 1). The effect of the first operation (add 3) should be propagated
to the second one (add 4). To achieve that, the add operation uses the node in
the write-set only as a starting point and keeps traversing the tree from this
node until reaching the new node. Also, the operations lock the added nodes (3
and 4 in our case) before linking them to the tree. Those nodes are unlocked
together with the other nodes at the end of the commit phase. Any interleaving
transaction or structural operation running in the helper thread cannot force the
transaction to abort because all the involved nodes are already locked. Also, the
other cases of having dependent operations, such as adding (or removing) the
same key twice and adding a key and then removing it, are solved earlier during
the operation itself (as mentioned in the traversal phase).

The second point is how TxCF-Tree preserves the reduced interferences be-
tween the structural and the semantic operations without hampering the two-
phase locking mechanism. The main issue in this regard is that structural in-
validations may not abort the transaction. Thus, a transaction cannot lock the
nodes in the write-set and then validate the nodes in the read-set because, if so,
in case of a structural invalidation, the invalidated operation (which can be a
write operation) would continue traversing the tree and reach a new node (which
is not yet locked). To solve this problem, we use an inline validation of the en-
tries in the write-set. The write-set entries are both locked and validated at the
same time. If the write operation fails in its validation: 1) it unlocks the node;
2) re-traverses the tree; 3) locks the new node; and 4) re-validates the entry.

5 Correctness

Since we use the OTB methodology to make CF-Tree transactional, the correct-
ness of TxCf-Tree will be inherited from the correctness of CF-Tree. The main
difference is that the transactions in TxCF-Tree (rather than the operations in
Cf-Tree) are serialized (rather than linearized in CF-Tree) as described in [15].
The serialization point of a read-write transaction is the point right after ac-
quiring the locks and before the (successful) validation during commit. For a
read-only transaction, the serialization point is the return of its last read op-
eration. Both those points are immediately followed by a validation procedure
(Algorithm 4). If this validation succeeds, then all the transaction operations are
guaranteed to be consistent.

More in detail, the correctness of TxCf-Tree can be viewed in two steps. First,
we show, without loss of generality, that if each transaction is composed of only
one TxCF-Tree operation then the operations are linearizable. Then, we prove
that if the transaction contains more than one operation then it is opaque.

Theorem 1. The linearization of CF-Tree’s operations is preserved in TxCF-
Tree if it is accessed non-transactionally (one operations per transaction).

Proof. Each operation traverses the tree following the same rules as in CF-
Tree. After the traversal, we can distinguish between write and read operations’
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behavior. A write operation, instead of acquiring the locks on the involved nodes
instantaneously after the traversal, it acquires the same locks, but at transaction
commit time. Since the transaction is validated after the locks acquisition using
the same validation done by CF-Tree, the linearization points of each write
operation is just shifted to the commit phase of the transaction (rather than
after the operation as in CF-Tree). Linearizing the read operations is easier in
TxCF-Tree, because they become no longer wait-free, and the transaction checks
(during the validation procedure) that the involved node is both unlocked and
valid. The step of checking the lock of each operation’s node is the return point
that can be safely used for linearizing the operation.

The correctness of the mechanisms used to achieve interference-less struc-
tural operations can be inferred as follows.

i) Splitting locks into structural and semantic locks does not affect correct-
ness by any mean, because any two conflicting operations (e.g., two operations
that attempt to delete the same node, or two operations that attempt to insert
new nodes on the same link) acquire the same type of lock.

ii) Structural invalidations are raised and handled in the same way as CF-
Tree (as we show in Algorithms 1 and 3). Since we use the same approach for
rotation and physical deletion (e.g., cloning the rotated down node and linking
the physically deleted node to its parent), re-traversing the tree after a structural
invalidation is guaranteed to be safe as in CF-Tree itself (see [9] for the complete
proof of validation in CF-Tree).

iii) Semantic invalidations preserve the consistency among the operations
within the same transaction. Unlike structural invalidations, in those cases, the
whole transaction is aborted.

iv) The inline validation during commit does not affect the correctness (al-
though it violates two-phase locking) because every inline-validated node is
locked before being validated and cannot be invalidated anymore if the vali-
dation succeeds.

v) Validating the whole read-set after each operation and before committing
preserves consistency in the presence of concurrent structural operations. For
example, assuming the scenario where a structural operation physically removes
a node that is used by a running transaction T1, which can be followed by a
semantic operation (executed in another transaction T2) that adds this node in
a different place of the tree. Although this new addition will not be detected
by T1’s validation, the expected race condition will be solved because T1 will
detect during the validation (after the next operation or at commit) that the
removed flag of the node has been changed (line 8 in Algorithm 3) and will
continue traversing the tree. At this point, T1 will reach the same new node as
T2, and they will be serialized independently from the structural operation.

It is clear that TxCF-Tree’s operations are not opaque at memory level (i.e.,
in a history composed of all the memory locations accessed while performing
the semantic operations). This is mainly because each operation in TxCF-Tree
traverses the tree non-speculatively and all the reads during this traversal phase
can be invalidated by any concurrent transaction. However, our target is to make
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TxCF-Tree semantically consistent. To prove that, we first define the return
points of TxCF’s operations as follows:

Definition 1. The return point of a read operation (i.e. a contains operation
or an unsuccessful add/remove operation) is a point that exists at any place in
the execution between the invocation and the commit of the operation and reflects
the return value of the operation (either true or false).

In other words, this return point is the linearization point of the operation in
the concurrent (non-transactional) CF-Tree, and the corresponding serialization
point (that we mentioned above) in the transactional TxCF-Tree. In the same
way, we define the return point of the write operation as follows:

Definition 2. The return point of a write operation (i.e. a successful add/remove
operation) is a point that exists at any place in the execution between the invo-
cation and the commit of the operation and reflects an atomic action of reading
the old state of the key and modifying it.

For example, if the add(x) operation is successful, its return point is the
point that reflects atomically changing the abstract state of the tree from being
not including x to be including x.

As in most two-phase-locking-based concurrency control, the serialization
point of a read-write transaction is the point right after acquiring the locks and
before the (successful) validation during commit (which corresponds to line 23
of Algorithm 5). This point is typically a combination of all its operations’ re-
turn points. For a read-only transaction, the serialization point is the return of
its last read operation. Both points are immediately followed by a validation
procedure (Algorithm 4). If this validation succeeds, then all the transaction’s
operations are guaranteed to be consistent. Also, for a read-write transaction, all
its write operations lock their nodes so they cannot interfere with other transac-
tions. This is somewhat similar to the serialization point of the memory-based
TL2 algorithm [11]. However, in TL2, read-write transactions increment a global
timestamp after locking the nodes, while in TxCF-Tree we replace that mech-
anism with a validation of the whole read-set after each operation and during
commit.

Then we define a history H of TxCF-Tree operations as the history of each
operation’s return point (we can also add the invocation point of each operation.
However, removing those points will not affect the proof, so we excluded them for
clarity). Any history H is opaque if there is a legal sequential history S equivalent
to complete(H) (which includes the non-committed transactions as well) and
respects the real-time order of H. We finally report our theorem that proves
the correctness of TxCF-Tree. Throughout the whole proof of this theorem, we
assumed a history that contains only TxCF-Tree operations (which means that
accesses that do not use the tree’s APIs are prevented). We leave the general
case, where we allow any kind of accesses in the transaction as a future work.

Theorem 2. A history H of TxCF-Tree’s operations is opaque.
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Proof. Opacity was proposed in [14] to formally proof the correctness of TM im-
plementations, and most STM algorithms are proven to guarantee opacity [10,
11, 23]. Intuitively, as mentioned in [14], opacity is guaranteed if three require-
ments are captured: i) every committed transaction atomically appears in a
single indivisible point in the history of the committed transactions, ii) live
transactions do not see the intermediate results of any aborted transaction, iii)
transactions are always consistent even if they will eventually abort. We show
that those three requirements are preserved in TxCF-Tree. We borrow the same
terminology used in [14]. However, for brevity, instead of having two points in
the history for each operation (the invocation point and the return point), we
will only show one point which reflects the return point, as we showed earlier.

Equivalence to a legal sequential history:. The first requirement for a history
H to be opaque is that if we remove all non-committed transaction, the resulting
sub-history H′ is equivalent to a legal sequential history S ′ that preserves the
real-time order of the transactions in H′. In TxCF-Tree, H′ preserves the real-
time order because all operations are linearized during the commit phases of
their transactions. For that reason, a committing transaction can be serialized
in one point, right after the transaction successfully acquires its semantic locks.
After this serialization point, if the transaction successfully validates its read-set,
all conflicting transactions in H′ will be serialized after it. If it fails in validation,
it will simply abort.

Precisely, we have five cases to cover for proving the legality of any sub-history
H′ of some committed transactions T1, T2, ..., Tn:

1. Transaction are executed serially: which means that each transaction starts
after the previous transaction commits. The real-time order in this case is
natively preserved because after Ti commits, all its writes are immediately
visible to the following transactions (threads are not caching any state of the
objects).

2. Concurrent transactions are independent (which means that they have no
intersection in their read/write-sets or the intersection is only between read-
sets). Natively, they can be serialized in any order. The history of each
transaction as a standalone transaction is kept legal because we check the
local write-set first and we continue traversing the tree during commit. Also,
the elimination mechanism we used is safe because we only eliminate the
operations from the write-set and leave them in the read-set. For example,
in the following history:
H1 =< add(Ti, x, true), contains(Ti, x, true), remove(Ti, x, true), tryCTi , CTi >
Both the contains and the remove operations cannot return an illegal value
(which is false in this case) during the execution of the transaction because
the add operation is saved in the write-set. Also, the remove operation elim-
inates the add but they will be validated correctly at commit because their
entries are in the read-set.

3. The write-sets of two concurrent transactions, Ti and Tj , intersect. Clearly
the commit phases of those transactions can never execute concurrently.
Either one of them will fail in acquiring the semantic locks and thus will
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abort, or Tj will start its commit after Ti entirely finishes its commit and
releases its locks, which allows serializing Ti before Tj .

4. The read-set of Ti intersects with the write-set of Tj and the read-set of Tj

does not intersect with the write-set of Ti. In this case, Ti will either abort
during the commit-time validation, or it will successfully finish its validation
before Tj acquires the “conflicting” semantic locks. In the latter case, Ti can
be safely serialized before Tj .

5. The read-set of Ti intersects with the write-set of Tj and the read-set of
Tj intersects with the write-set of Ti. In this case, any scenario where both
transactions concurrently commit is illegal. For example, in the following
two histories3:
H2 =< remove(Tk, x, true), remove(Tk, y, true), tryCTk

, CTk
, add(Ti, x, true),

contains(Tj , x, false), add(Tj , y, true), contains(Ti, y, false), tryCTi
, CTi

, tryCTj
, CTj

>
H3 =< remove(Tk, x, true), remove(Tk, y, true), tryCTk

, CTk
, add(Ti, x, true),

contains(Tj , x, true), add(Tj , y, true), contains(Ti, y, true), tryCTi
, CTi

, tryCTj
, CTj

>
Both histories are illegal because the contains operations in Ti and Tj

cannot return both false or both true4. A possible legal case is that the
contains operation of Ti returns false and the one of Tj returns true (which
allows Ti to be legally serialized before Tj).
Our validation process in Algorithm 4 prevents that all these illegal scenarios
can happen. As we validate that the nodes in the read-set are both unlocked
and valid. Ti and Tj cannot both successfully acquire the semantic locks and
then successfully validate their read-sets before starting to write. At least
one transaction will abort because some entries in its read-set is locked by
the other transaction.

The effect of the aborted transactions:. Aborted transactions in TxCF-Tree
have no effect on the live transactions. This is simply because transactions do
not publish any writes until their commit phase. During commit, if a transaction
successfully acquires the semantic locks and then it successfully validates its read-
set, it cannot abort anymore. Accordingly, it is safe at this point to start writing
on the shared tree.

Consistency of live transactions:. Transactions which guarantee opacity should
always observe a consistent state. This also includes the live transactions, which
are the transactions that did not yet commit or abort. Theoretically, as men-
tioned in [14], we can transform any history which contains some live transactions
to a complete history by either committing or aborting those live transactions.
The challenge here is to prove that this completed history is still legal (which
means that the operations executed so far inside the live transactions are legal).
In TxCF-Tree we guarantee that live transactions always observe a consistent
state by the post-validation procedure which validates, after each operation, that
the entire read-set is still valid.

3 We put the first two operations of Tk to enforce that x and y are both in the set
before Ti and Tj start.

4 This case is an example of producing a cyclic opacity graph which is mentioned in
[14].



Transactional Interference-less Balanced Tree 17

Precisely, in a history H, an operation:
< op(Ti, x, true/false) >
can be implicitly extended to either:
< op(Ti, x, true/false), validate(Ti, succeeded) >
or:
< op(Ti, x, true/false), validate(Ti, failed), ATi

>
according to whether its validation succeeds or fails, which guarantees pre-

serving the legality of H.

6 Evaluation

In our experiments we compared the performance of TxCF-Tree with the per-
formance of TB and some STM approaches. Our implementation of TB uses
CF-Tree as the underlying (black-box) tree, which makes a fair comparison.
Regarding STM, we tested three different algorithms: LSA [23]; TL2 [11]; and
NOrec [10], and, to make plots clear, we reported the best performance collected.

All experiments were conducted on a 64-core machine, which has 4 AMD
Opteron (TM) Processors, each with 16 cores running at 1.4 GHz, 32 GB of
RAM, and 16KB L1 data cache. Throughput is measured as the number of
semantic operations (not transactions) per second to have consistent data points.
However, since the benchmark executes 256 no-op instructions in between two
transactions, this may result in different throughput ranges for different sizes of
transactions. Each data point is the average of five runs.

In Figure 2(a) we show the results for a scenario that mimics the concurrent
(non-transactional) case (i.e., each transaction executes only one operation on
the tree). We leverage this plot to show the cost of adopting a transactional
solution over a pure concurrent tree. Clearly STM does not scale because it
“blindly” speculates on all the memory reads and writes. This poor scalability
of STM is confirmed in all the experiments we made. On the other hand, both
TB and TxCF-Tree scale better than STM and close to CF-Tree (TxCF-Tree is
slightly closer). This behavior shows an overhead that is affordable in case one
wants to use the TxCF-Tree library even for just handling the concurrency of
atomic semantic operations without transactions.

Figures 2(b)-2(g) show the transactional case, in which we deployed five
operations per transaction for different sizes of the tree (1K, 10K, and 100K) and
different read/write workloads (10% and 50% of add/remove operations). We
do not include CF-Tree because it only supports concurrent operations and thus
it cannot handle the execution of transactions. TxCF-Tree performs generally
better than TB. The gap between the two algorithms decreases when we increase
the percentage of the write operations. This is reasonable because the conflict
level becomes higher, and it best fits the more pessimistic approach (as TB).

Increasing the size of the tree also decreases the gap between TxCF-Tree and
TB. At first impression it appears counterintuitive because increasing the size
of the tree means generally decreasing the overall contention, which should be
better for optimistic approaches like TxCF-Tree. The actual reason is that, in the
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Fig. 2. Throughput with one operation (2(a)), and five operations (2(b)-2(g)) per trans-
action (labels indicate the size of the tree and the % of the add/remove operations).
Figure 2(h) shows the percentage of the two interference types using 32 threads.

case of very low contention, most of the transactions do not conflict with each
other and both algorithms linearly scale. Then, when the conflict probability
increases, the difference between the algorithms becomes visible. A comparison
between Figure 2(e) and Figure 2(g) (which differ only for the size of the tree)
confirms this claim. In Figure 2(e), both algorithms scale well up to 32 threads
because threads are almost non-conflicting, then TB starts to suffers from its
non-optimized design while TxCF-Tree keeps scaling. On the other hand, in
Figure 2(g) both algorithms scale until 60 threads because the tree is large.

Summarizing, analyzing the above results we can identify two points that al-
low TxCF-Tree to outperform competitors: i) having an optimized unmonitored
traversal phase that reduces false conflicts, and ii) having optimized valida-
tion/commit procedures that minimize the interferences between structural and
semantic operations. Both TB and TxCF-Tree gain performance by exploiting
the first point, in fact TB itself performs (up to an order of magnitude) better
than STM. However, only TxCF-Tree uses an optimized design for a balanced
tree data structure, and it makes its performance generally (much) better than
TB. In the aforementioned experiments we use two versions of TxCF-Tree, one
with the adaptive back-off time in between two helper thread iterations (named
BTxCF-Tree), and one without. The results show that this optimization fur-
ther enhances the performance, especially in the small tree (the cases of 10%
add/remove operations). This gain may increase with a more effective heuristic.

The last experiment we report regards the capability of TxCF-Tree to reduce
interferences with structural operations. Although breaking down TxCF-Tree’s
operations to measure this gain is not straightforward, we roughly estimated the
gain by quantifying two metrics: the true interferences count, which is simply
the actual transactional aborts count; and the false interferences count, which is
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the count of the cases in which the transaction does not abort because the tree
is re-traversed instead or because the operations in TxCF-Tree acquire only one
(structural or semantic) lock. In Figure 2(h) the false-interferences are 25%-30%
of the total interferences for different sizes of the transactions.

7 Conclusions

We presented TxCF-Tree, the first interference-less transactional balanced tree.
Unlike the former general approaches, it uses an optimized conflict management
mechanism that reacts differently according to the type of the operation. Our ex-
periments confirm that TxCF-Tree performs better than the general approaches.
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