
1 / 32

On Open Nesting in Distributed Transactional

Memory

Alexandru Turcu∗ Binoy Ravindran∗

June 4, 2012

∗Virginia Tech



Overview

Overview

Introduction

Open Nesting

TFA-ON

Experiments

Conclusions

2 / 32
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■ Open Nesting
■ TFA with Open Nesting (TFA-ON)
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■ Promising new model for programming distributed
concurrency

◆ Aims to replace distributed locks
◆ Avoids their problems: distributed dead-locks,

live-locks, difficult code composition

■ Employs transactions

◆ Successful abstraction originating in the database
community

◆ Provide atomicity, consistency, isolation



Introducing Transactions

Overview

Introduction

DTM

Transactions

Nested Transactions

Example

Open Nesting

TFA-ON

Experiments

Conclusions

5 / 32

■ We consider a redo-log approach:

◆ Write ops are buffered to a write-set
◆ Read ops first look at the write-set
◆ Read ops are recorded in a read-set → used for

validation (to make sure objects did not change
since first seen)

■ On commit, changes are propagated to the globally
committed memory

■ On abort, changes are discarded and the transaction
is retried
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■ Nesting is used to enable code composability

◆ Transaction enclosed within another transaction

■ Three types, based on parent/children interactions:

◆ Flat nesting (monolithic transactions), conflict in
child aborts parent

◆ Closed nesting, children can abort independently
◆ Open nesting, child releases isolation early
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■ Why? Consider an example:

◆ Set implemented using a skip-list
◆ Operations accessing neighboring nodes conflict
◆ For short transactions, this is OK
◆ Long transactions would abort in vain.

1 5 7

T1

T2 Has 4?
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■ Why? Consider an example:

◆ Set implemented using a skip-list
◆ Operations accessing neighboring nodes conflict
◆ For short transactions, this is OK
◆ Long transactions would abort in vain.

1 5 7

T1

T2

Del 5!

Has 4?

Commit

Abort

■ False conflict
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■ False conflicts:

◆ Memory operations do conflict
◆ Conceptually, no conflict

■ Separate transactions into multiple levels of
abstraction:

◆ Make transactions at the lower (memory) level
shorter, releasing isolation earlier

◆ Preserve fundamental conflicts at the higher
level

■ When two ops can not commute
(e.g., Has 5? and Del 5!)

■ Detect using other mechanisms
(e.g., abstract locks)
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■ When parent needs to abort after child committed:

◆ Revert the data structure to its original (abstract)
state by applying a compensating action

◆ Example: to compensate for adding 5 to a set →
remove 5

■ Abstract locks:

◆ Do not lock physical memory locations, thus
abstract

◆ Can be used to implement mutual exclusion,
R/W, etc.
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■ Because isolation is released early, maintaining
correctness becomes the task of the programmer

◆ Correct usage of abstract locks is paramount
◆ Open nesting recommended for experts only

(e.g., library devs)
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■ TFA is an existing protocol for distributed STM

◆ Based around Transactional Locking II and
Lamport clocks

■ Provides a way to establish ”happens before”
relationships

◆ Each node holds a node-local clock
◆ Clock value affixed to all messages
◆ Clock incremented on local transactions’ commits
◆ When a message from a node with a higher clock

is received, local clock is updated
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■ Each txn stores its starting time
■ When a txn communicates with a node with a higher

clock:

◆ Attempt to update txn’s starting time (i.e.
transactional forwarding)

◆ Must validate read-set before forwarding

■ Success → update txn starting time and
continue

■ Failure → abort txn
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■ Our contribution: Transactional Forwarding Algorithm
with Open Nesting (TFA-ON), implemented in
HyFlow Java DTM framework.

■ Open nested transactions in TFA-ON resemble the
root transactions of TFA:

◆ They record the local clock when they start
◆ They increment the local clock upon commit

■ For closed nested sub-transactions, the closest
open-nested ancestor acts as a local root

◆ Objects in all levels underneath this local root are
considered for validation

◆ When performing transactional forwarding, the
starting time of the local root is updated
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■ Abstract lock acquisition:

◆ With respect to the open-nested child → late
acquisition (at commit time)

◆ With respect to the parent transaction → early
acquisition (encounter time)

■ Deadlocks are possible

◆ We chose to abort the whole transaction chain
when an abstract lock acquisition fails.

◆ This ensures all abstract locks are released,
avoiding deadlocks.
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■ Micro-benchmarks

◆ Three distributed data structures (skip-list,
hash-table, binary search tree)

◆ Enhanced counter application

■ Parameters:

◆ Read-only ratio (r)
◆ Number of calls (c)
◆ Key domain size (k)

■ Measured quantities (among others):

◆ Throughput
◆ Committed/aborted transactions,

sub-transactions, commit/compensating actions

■ 48-node AMD Opteron testbed running Linux
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Throughput relative to flat, on skip-list, with c=3
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Throughput relative to flat, on skip-list, with 20% reads
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Time in committed vs aborted, hash-table, r=20 and c=4
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Successful transactions relative overheads, on hash-table
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Breakdown time in successful txn, hash-table, r=20, c=4
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Breakdown time in failed txn, hash-table, r=20, c=4
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Number of aborts vs commits, on hash-table
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Throughput, on hash-table, r=20, k=1000
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Factors limiting performance:

■ Commit overhead at low node-count

◆ Significant in read-dominated workloads

■ Increased fundamental conflicts at hight node-count

◆ Depends on available key-space for abstract
locking

Open nesting optimistically assumes the parent will
commit. Contention in parent after open-nested child
reduces benefit.
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