
1 / 32

On Open Nesting in Distributed Transactional

Memory

Alexandru Turcu∗ Binoy Ravindran∗

June 4, 2012

∗Virginia Tech



Overview

Overview

Introduction

Open Nesting

TFA-ON

Experiments

Conclusions

2 / 32

■ Introduction

◆ Distributed Transactional Memory
◆ Nested Transactions

■ Open Nesting
■ TFA with Open Nesting (TFA-ON)

◆ Transactional Forwarding Algorithm
◆ TFA-ON

■ Experimental analysis
■ Conclusions



Introduction

Overview

Introduction

DTM

Transactions

Nested Transactions

Example

Open Nesting

TFA-ON

Experiments

Conclusions

3 / 32



Distributed Transactional Memory

Overview

Introduction

DTM

Transactions

Nested Transactions

Example

Open Nesting

TFA-ON

Experiments

Conclusions

4 / 32

■ Promising new model for programming distributed
concurrency

◆ Aims to replace distributed locks
◆ Avoids their problems: distributed dead-locks,

live-locks, difficult code composition

■ Employs transactions

◆ Successful abstraction originating in the database
community

◆ Provide atomicity, consistency, isolation



Introducing Transactions

Overview

Introduction

DTM

Transactions

Nested Transactions

Example

Open Nesting

TFA-ON

Experiments

Conclusions

5 / 32

■ We consider a redo-log approach:

◆ Write ops are buffered to a write-set
◆ Read ops first look at the write-set
◆ Read ops are recorded in a read-set → used for

validation (to make sure objects did not change
since first seen)

■ On commit, changes are propagated to the globally
committed memory

■ On abort, changes are discarded and the transaction
is retried



Nested Transactions

Overview

Introduction

DTM

Transactions

Nested Transactions

Example

Open Nesting

TFA-ON

Experiments

Conclusions

6 / 32

■ Nesting is used to enable code composability

◆ Transaction enclosed within another transaction

■ Three types, based on parent/children interactions:

◆ Flat nesting (monolithic transactions), conflict in
child aborts parent

◆ Closed nesting, children can abort independently
◆ Open nesting, child releases isolation early



Flat vs Closed nesting

Overview

Introduction

DTM

Transactions

Nested Transactions

Example

Open Nesting

TFA-ON

Experiments

Conclusions

7 / 32



Flat vs Open nesting

Overview

Introduction

DTM

Transactions

Nested Transactions

Example

Open Nesting

TFA-ON

Experiments

Conclusions

8 / 32



Open Nesting

Overview

Introduction

Open Nesting

Multilevel Txn

Safety

TFA-ON

Experiments

Conclusions

9 / 32



Multilevel Transactions

Overview

Introduction

Open Nesting

Multilevel Txn

Safety

TFA-ON

Experiments

Conclusions

10 / 32

■ Why? Consider an example:

◆ Set implemented using a skip-list
◆ Operations accessing neighboring nodes conflict
◆ For short transactions, this is OK
◆ Long transactions would abort in vain.

1 5 7

T1

T2 Has 4?



Multilevel Transactions

Overview

Introduction

Open Nesting

Multilevel Txn

Safety

TFA-ON

Experiments

Conclusions

11 / 32

■ Why? Consider an example:

◆ Set implemented using a skip-list
◆ Operations accessing neighboring nodes conflict
◆ For short transactions, this is OK
◆ Long transactions would abort in vain.

1 5 7

T1

T2

Del 5!

Has 4?

Commit

Abort

■ False conflict



Multilevel Transactions

Overview

Introduction

Open Nesting

Multilevel Txn

Safety

TFA-ON

Experiments

Conclusions

12 / 32

■ False conflicts:

◆ Memory operations do conflict
◆ Conceptually, no conflict

■ Separate transactions into multiple levels of
abstraction:

◆ Make transactions at the lower (memory) level
shorter, releasing isolation earlier

◆ Preserve fundamental conflicts at the higher
level

■ When two ops can not commute
(e.g., Has 5? and Del 5!)

■ Detect using other mechanisms
(e.g., abstract locks)



Multilevel transactions

Overview

Introduction

Open Nesting

Multilevel Txn

Safety

TFA-ON

Experiments

Conclusions

13 / 32

■ When parent needs to abort after child committed:

◆ Revert the data structure to its original (abstract)
state by applying a compensating action

◆ Example: to compensate for adding 5 to a set →
remove 5

■ Abstract locks:

◆ Do not lock physical memory locations, thus
abstract

◆ Can be used to implement mutual exclusion,
R/W, etc.



Open Nesting Safety

Overview

Introduction

Open Nesting

Multilevel Txn

Safety

TFA-ON

Experiments

Conclusions

14 / 32

■ Because isolation is released early, maintaining
correctness becomes the task of the programmer

◆ Correct usage of abstract locks is paramount
◆ Open nesting recommended for experts only

(e.g., library devs)



TFA-ON

Overview

Introduction

Open Nesting

TFA-ON

TFA

TFA-ON

Locks

Defining Txn

Experiments

Conclusions

15 / 32



Transactional Forwarding Algorithm

Overview

Introduction

Open Nesting

TFA-ON

TFA

TFA-ON

Locks

Defining Txn

Experiments

Conclusions

16 / 32

■ TFA is an existing protocol for distributed STM

◆ Based around Transactional Locking II and
Lamport clocks

■ Provides a way to establish ”happens before”
relationships

◆ Each node holds a node-local clock
◆ Clock value affixed to all messages
◆ Clock incremented on local transactions’ commits
◆ When a message from a node with a higher clock

is received, local clock is updated



Transactional Forwarding Algorithm

Overview

Introduction

Open Nesting

TFA-ON

TFA

TFA-ON

Locks

Defining Txn

Experiments

Conclusions

17 / 32

■ Each txn stores its starting time
■ When a txn communicates with a node with a higher

clock:

◆ Attempt to update txn’s starting time (i.e.
transactional forwarding)

◆ Must validate read-set before forwarding

■ Success → update txn starting time and
continue

■ Failure → abort txn



TFA-ON

Overview

Introduction

Open Nesting

TFA-ON

TFA

TFA-ON

Locks

Defining Txn

Experiments

Conclusions

18 / 32

■ Our contribution: Transactional Forwarding Algorithm
with Open Nesting (TFA-ON), implemented in
HyFlow Java DTM framework.

■ Open nested transactions in TFA-ON resemble the
root transactions of TFA:

◆ They record the local clock when they start
◆ They increment the local clock upon commit

■ For closed nested sub-transactions, the closest
open-nested ancestor acts as a local root

◆ Objects in all levels underneath this local root are
considered for validation

◆ When performing transactional forwarding, the
starting time of the local root is updated



Abstract Locks in TFA-ON

Overview

Introduction

Open Nesting

TFA-ON

TFA

TFA-ON

Locks

Defining Txn

Experiments

Conclusions

19 / 32

■ Abstract lock acquisition:

◆ With respect to the open-nested child → late
acquisition (at commit time)

◆ With respect to the parent transaction → early
acquisition (encounter time)

■ Deadlocks are possible

◆ We chose to abort the whole transaction chain
when an abstract lock acquisition fails.

◆ This ensures all abstract locks are released,
avoiding deadlocks.



Defining Transactions

Overview

Introduction

Open Nesting

TFA-ON

TFA

TFA-ON

Locks

Defining Txn

Experiments

Conclusions

20 / 32



Experiments

Overview

Introduction

Open Nesting

TFA-ON

Experiments

Setup

Results

Conclusions

21 / 32



Setup

Overview

Introduction

Open Nesting

TFA-ON

Experiments

Setup

Results

Conclusions

22 / 32

■ Micro-benchmarks

◆ Three distributed data structures (skip-list,
hash-table, binary search tree)

◆ Enhanced counter application

■ Parameters:

◆ Read-only ratio (r)
◆ Number of calls (c)
◆ Key domain size (k)

■ Measured quantities (among others):

◆ Throughput
◆ Committed/aborted transactions,

sub-transactions, commit/compensating actions

■ 48-node AMD Opteron testbed running Linux



Results: Throughput

Overview

Introduction

Open Nesting

TFA-ON

Experiments

Setup

Results

Conclusions

23 / 32

Throughput relative to flat, on skip-list, with c=3



Results: Throughput

Overview

Introduction

Open Nesting

TFA-ON

Experiments

Setup

Results

Conclusions

24 / 32

Throughput relative to flat, on skip-list, with 20% reads



Results: abort vs. commit time

Overview

Introduction

Open Nesting

TFA-ON

Experiments

Setup

Results

Conclusions

25 / 32

Time in committed vs aborted, hash-table, r=20 and c=4



Results: commit overheads

Overview

Introduction

Open Nesting

TFA-ON

Experiments

Setup

Results

Conclusions

26 / 32

Successful transactions relative overheads, on hash-table



Results: breakdown

Overview

Introduction

Open Nesting

TFA-ON

Experiments

Setup

Results

Conclusions

27 / 32

Breakdown time in successful txn, hash-table, r=20, c=4



Results: breakdown

Overview

Introduction

Open Nesting

TFA-ON

Experiments

Setup

Results

Conclusions

28 / 32

Breakdown time in failed txn, hash-table, r=20, c=4



Results: number of aborts

Overview

Introduction

Open Nesting

TFA-ON

Experiments

Setup

Results

Conclusions

29 / 32

Number of aborts vs commits, on hash-table



Results: increased key-space

Overview

Introduction

Open Nesting

TFA-ON

Experiments

Setup

Results

Conclusions

30 / 32

Throughput, on hash-table, r=20, k=1000



Conclusions

Overview

Introduction

Open Nesting

TFA-ON

Experiments

Conclusions

Conclusions

31 / 32



Conclusions

Overview

Introduction

Open Nesting

TFA-ON

Experiments

Conclusions

Conclusions

32 / 32

Factors limiting performance:

■ Commit overhead at low node-count

◆ Significant in read-dominated workloads

■ Increased fundamental conflicts at hight node-count

◆ Depends on available key-space for abstract
locking

Open nesting optimistically assumes the parent will
commit. Contention in parent after open-nested child
reduces benefit.


	Overview
	Introduction
	Distributed Transactional Memory
	Introducing Transactions
	Nested Transactions
	Flat vs Closed nesting
	Flat vs Open nesting

	Open Nesting
	Multilevel Transactions
	Multilevel Transactions
	Multilevel Transactions
	Multilevel transactions
	Open Nesting Safety

	TFA-ON
	Transactional Forwarding Algorithm
	Transactional Forwarding Algorithm
	TFA-ON
	Abstract Locks in TFA-ON
	Defining Transactions

	Experiments
	Setup
	Results: Throughput
	Results: Throughput
	Results: abort vs. commit time
	Results: commit overheads
	Results: breakdown
	Results: breakdown
	Results: number of aborts
	Results: increased key-space

	Conclusions
	Conclusions


